Our modern picture of the universe dates back to only 1924, when the American astronomer Edwin Hubble demonstrated that ours was not the only galaxy. There were in fact many others, with vast tracts of empty space between them. In order to prove this, he needed to determine the distances to these other galaxies, which are so far away that, unlike nearby stars, they really do appear fixed. Hubble was forced, therefore, to use indirect methods to measure the distances. Now, the apparent brightness of a star depends on two factors: how much light it radiates (its luminosity), and how far it is from us. For nearby stars, we can measure their apparent brightness and their distance, and so we can work out their luminosity. Conversely, if we knew the luminosity of stars in other galaxies, we could work out their distance by measuring their apparent brightness. Hubble noted that certain types of stars always have the same luminosity when they are near enough for us to measure; therefore, he argued, if we found such stars in another galaxy, we could assume that they had the same luminosity – and so calculate the distance to that galaxy. If we could do this for a number of stars in the same galaxy, and our calculations always gave the same distance, we could be fairly confident of our estimate.
The nearest star, called Proxima Centauri, is found to be about four light-years away, or about twenty-three million million miles. Most of the other stars that are visible to the naked eye lie within a few hundred light-years of us.
We now know that our galaxy is only one of some hundred thousand million that can be seen using modern telescopes, each galaxy itself containing some hundred thousand million stars... We live in a galaxy that is about one hundred thousand light-years across and is slowly rotating; the stars in its spiral arms orbit around its center about once every several hundred million years.
Newton, and others, should have realized that a static universe would soon start to contract under the influence of gravity. But suppose instead the universe expanding. If it was expanding fairly slowly, the force of gravity would cause it eventually to stop expanding and then to start contracting. However, if it was expanding at more than a certain critical rate, gravity would never be strong enough to stop it, and the universe would continue to expand forever.
A remarkable feature of the first kind of Friedmann model is that in it the universe is not infinite in space, but neither does space have any boundary. Gravity is so strong that space is bent round onto itself, making it rather like the surface of the earth. If one keeps traveling in a certain direction on the surface of the earth, one never comes up against an impassable barrier or falls over the edge, but eventually comes back to where one started.
The present evidence therefore suggests that the universe will probably expand forever, but all we can really be sure of is that even if the universe is going to recollapse, it won't do so for at least another ten thousand million years, since it has already been expanding for at least that long. This should not unduly worry us: by that time, unless we have colonized beyond the Solar System, mankind would long since have died out, extinguished along with our sun!